本文目录一览:
用Python画星空图,并且要求有月亮
import turtle as t
from random import randint
def five(size):for a in range(5):t.forward(size);t.right(144)
def moon(size):t.circle(size)#半径
t.pencolor("yellow")
t.penup()
t.goto(100,100)
t.pendown()
moon(4)
for a in range(10):t.penup();t.goto(randint(100,0),randint(100,0));t.pendown();five(randint(1,3))
还可以再改进改进。
121 11 个案例掌握 Python 数据可视化--星际探索
星空是无数人梦寐以求想了解的一个领域,远古的人们通过肉眼观察星空,并制定了太阴历,指导农业发展。随着现代科技发展,有了更先进的设备进行星空的探索。本实验获取了美国国家航空航天局(NASA)官网发布的地外行星数据,研究及可视化了地外行星各参数、寻找到了一颗类地行星并研究了天体参数的相关关系。
输入并执行魔法命令 %matplotlib inline, 设置全局字号,去除图例边框,去除右侧和顶部坐标轴。
本数据集来自 NASA,行星发现是 NASA 的重要工作之一,本数据集搜集了 NASA 官网发布的 4296 颗行星的数据,本数据集字段包括:
导入数据并查看前 5 行。
截至 2020 年 10 月 22 日 全球共发现 4296 颗行星,按年聚合并绘制年度行星发现数,并在左上角绘制 NASA 的官方 LOGO 。
从运行结果可以看出,2005 年以前全球行星发现数是非常少的,经计算总计 173 颗,2014 和 2016 是行星发现成果最多的年份,2016 年度发现行星 1505 颗。
对不同机构/项目/计划进行聚合并降序排列,绘制发现行星数目的前 20 。
2009 年至 2013 年,开普勒太空望远镜成为有史以来最成功的系外行星发现者。在一片天空中至少找到了 1030 颗系外行星以及超过 4600 颗疑似行星。当机械故障剥夺了该探测器对于恒星的精确定位功能后,地球上的工程师们于 2014 年对其进行了彻底改造,并以 K2 计划命名,后者将在更短的时间内搜寻宇宙的另一片区域。
对发现行星的方式进行聚合并降序排列,绘制各种方法发现行星的比例,由于排名靠后的几种方式发现行星数较少,因此不显示其标签。
行星在宇宙中并不会发光,因此无法直接观察,行星发现的方式多为间接方式。从输出结果可以看出,发现行星主要有以下 3 种方式,其原理如下:
针对不同的行星质量,绘制比其质量大(或者小)的行星比例,由于行星质量量纲分布跨度较大,因此采用对数坐标。
从输出结果可以看出,在已发现的行星中,96.25% 行星的质量大于地球。(图中横坐标小于 e 的红色面积非常小)
通过 sns.distplot 接口绘制全部行星的质量分布图。
从输出结果可以看出,所有行星质量分布呈双峰分布,第一个峰在 1.8 左右(此处用了对数单位,表示大约 6 个地球质量),第二个峰在 6.2 左右(大概 493 个地球质量)。
针对不同发现方式发现的行星,绘制各行星的公转周期和质量的关系。
从输出结果可以看出:径向速度(Radial Velocity)方法发现的行星在公转周期和质量上分布更宽,而凌日(Transit)似乎只能发现公转周期相对较短的行星,这是因为两种方法的原理差异造成的。对于公转周期很长的行星,其运行到恒星和观察者之间的时间也较长,因此凌日发现此类行星会相对较少。而径向速度与其说是在发现行星,不如说是在观察恒星,由于恒星自身发光,因此其观察机会更多,发现各类行星的可能性更大。
针对不同发现方式发现的行星,绘制各行星的距离和质量的关系。
从输出结果可以看出,凌日和径向速度对距离较为敏感,远距离的行星大多是通过凌日发现的,而近距离的行星大多数通过径向速度发现的。原因是:近距离的行星其引力对恒星造成的摆动更为明显,因此更容易观察;当距离较远时,引力作用变弱,摆动效应减弱,因此很难借助此方法观察到行星。同时,可以观察到当行星质量更大时,其距离分布相对较宽,这是因为虽然相对恒星的距离变长了,但是由于行星质量的增加,相对引力也同步增加,恒星摆动效应会变得明显。
将所有行星的质量和半径对数化处理,绘制其分布并拟合其分布。
由于:
因此,从原理上质量对数与半径对数应该是线性关系,且斜率为定值 3 ,截距的大小与密度相关。
从输出结果可以看出:行星质量和行星半径在对数变换下,具有较好的线性关系。输出 fix_xy 数值可知,其关系可以拟合出如下公式:
拟合出曲线对应的行星平均密度为:
同样的方式绘制恒星质量与半径的关系。
从输出结果可以看出,恒星与行星的规律不同,其质量与半径在对数下呈二次曲线关系,其关系符合以下公式:
同样的方式研究恒星表面重力加速度与半径的关系。
从输出结果可以看出,恒星表面对数重力加速度与其对数半径呈现较好的线性关系:
以上我们分别探索了各变量的分布和部分变量的相关关系,当数据较多时,可以通过 pd.plotting.scatter_matrix 接口,直接绘制各变量的分布和任意两个变量的散点图分布,对于数据的初步探索,该接口可以让我们迅速对数据全貌有较为清晰的认识。
通过行星的半径和质量,恒星的半径和质量,以及行星的公转周期等指标与地球的相似性,寻找诸多行星中最类似地球的行星。
从输出结果可以看出,在 0.6 附近的位置出现了一个最大的圆圈,那就是我们找到的类地行星 Kepler - 452 b ,让我们了解一下这颗行星:
数据显示,Kepler - 452 b 行星公转周期为 384.84 天,半径为 1.63 地球半径,质量为 3.29 地球质量;它的恒星为 Kepler - 452 半径为太阳的 1.11 倍,质量为 1.04 倍,恒星方面数据与太阳相似度极高。
以下内容来自百度百科。 开普勒452b(Kepler 452b) ,是美国国家航空航天局(NASA)发现的外行星, 直径是地球的 1.6 倍,地球相似指数( ESI )为 0.83,距离地球1400光年,位于为天鹅座。
2015 年 7 月 24 日 0:00,美国国家航空航天局 NASA 举办媒体电话会议宣称,他们在天鹅座发现了一颗与地球相似指数达到 0.98 的类地行星开普勒 - 452 b。这个类地行星距离地球 1400 光年,绕着一颗与太阳非常相似的恒星运行。开普勒 452 b 到恒星的距离,跟地球到太阳的距离相同。NASA 称,由于缺乏关键数据,现在不能说 Kepler - 452 b 究竟是不是“另外一个地球”,只能说它是“迄今最接近另外一个地球”的系外行星。
在银河系经纬度坐标下绘制所有行星,并标记地球和 Kepler - 452 b 行星的位置。
类地行星,是人类寄希望移民的第二故乡,但即使最近的 Kepler-452 b ,也与地球相聚 1400 光年。
以下通过行星的公转周期和质量两个特征将所有行星聚为两类,即通过训练获得两个簇心。
定义函数-计算距离
聚类距离采用欧式距离:
定义函数-训练簇心
训练簇心的原理是:根据上一次的簇心计算所有点与所有簇心的距离,任一点的分类以其距离最近的簇心确定。依此原理计算出所有点的分类后,对每个分类计算新的簇心。
定义函数预测分类
根据训练得到的簇心,预测输入新的数据特征的分类。
开始训练
随机生成一个簇心,并训练 15 次。
绘制聚类结果
以最后一次训练得到的簇心为基础,进行行星的分类,并以等高面的形式绘制各类的边界。
从运行结果可以看出,所有行星被分成了两类。并通过上三角和下三角标注了每个类别的簇心位置。
聚类前
以下输出了聚类前原始数据绘制的图像。
python画五角星代码
python是一种强大的编程语言,通过使用python,我们可以进行各种各样的图案、语句、动画等等编程。你知道用python画五角星的代码是什么吗?今天小编就来为大家详细演示一遍。希望通过这个小小的例子,能让你的python编程技术更进一步!
1.导入python的turtle模块。具体如图所示。
2.开始画五星为了填充,需要开始填充begin_fill()。具体如图所示。
3.分别设置笔和填充。具体如图所示。
4.因为五角星每个角为36度,而且旋转180-36度,所以使用循环语句
foriinrange(5):
forward(100)
right(180-36)执行重复的动作。
具体如图所示。
5.最后填充。具体如图所示。
6.最后的图形。具体如图所示。
7.最后隐藏画笔ht()。具体如图所示。
照着上面的方法一步一步操作,就可以用python画五角星了,是不是很有趣?快来打开电脑试一试,画一个属于你自己的五角星吧!兴趣是学习的最大动力,在平常学习python语言时,你也可以多找些类似画五角星这样的例子来学习,这样没准可以让自己学的更快哦。
本篇文章使用以下硬件型号:联想小新Air15;系统版本:linux;软件版本:python。
python必背入门代码是什么?
python必背入门代码:
defnot_empty(s):
returnsandlen(s。strip())0
#returnsands。strip()
#如果直接单写s。strip()那么s如果是None,会报错,因为None没有strip方法。
#如果s是None,那么Noneand任何值都是False,直接返回false
#如果s非None,那么判定s。trip()是否为空。
这样子filter能过滤到None,"",""这样的值。
分成两部分看。第一部分是对长度进行序列。相当于就是range(5)他的结果就是。01234。第二部分就是具体的排序规则。排序规则是用nums的值进行排序,reverse没申明就是默认升序。就是用nums(0到4)的值进行排序,根据这个结果返回的一个range(5)的数组。
根据PEP的规定,必须使用4个空格来表示每级缩进。使用Tab字符和其它数目的空格虽然都可以编译通过,但不符合编码规范。支持Tab字符和其它数目的空格仅仅是为兼容很旧的的Python程序和某些有问题的编辑程序。
Python的函数支持递归、默认参数值、可变参数,但不支持函数重载。为了增强代码的可读性,可以在函数后书写“文档字符串”(Documentation Strings,或者简称docstrings),用于解释函数的作用、参数的类型与意义、返回值类型与取值范围等。可以使用内置函数help()打印出函数的使用帮助。